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SEPARATION TESTS OF ROCKET-PROPELI;D WDEIS 

OF A PILOT-ESCAPE CAPSULE 

By James A .  Hollinger 
Langley Research Center 

The separat ion of a je t t isonable-nose pi lot-escape capsule was inves t i -  
The combination model was pro- gated by means of rocket-model flight t e s t s .  

pe l led  t o  a supersonic Mach number a t  a low a l t i t u d e  and, while i n  coast ing 
flight, t h e  capsule was propelled away from t h e  afterbody of the model by two 
small so l id- fue l  rocket motors. The capsules were instrumented with accelerom- 
e t e r s  which showed that t h e  acce lera t ions  and r o t a t i o n s  were within human t o l -  
erances i n  a range of s ca l e  f ac to r s  most l i k e l y  t o  include a prototype s ingle-  
s ea t  a i r c r a f t .  The model pos i t ions  were determined from ground-based t racking  
cameras and onboard recovery cameras. Five f l i g h t  t e s t s  were conducted, during 
one of which t h e  combination did not separate. The t e s t s  i n  which separat ion 
occurred showed t h a t  t he  separation was smooth with a properly timed sequence 
and t h a t  the  capsule must be moved r ap id ly  away from the  afterbody t o  minimize 
dis turbances caused by t h e  afterbody flow f i e l d .  The afterbody with at tached 
capsule was boosted t o  supersonic test ve loc i ty  by a sol id-propel lant  booster 
rocket i n  t h e  afterbody. The f l i g h t s  were launched f r o m t h e  NASA Wallops 

I S t a t  ion. 

I INTRODUCTION 

To survive the  emergency escape from a supersonic a i rplane,  t he  p i l o t  needs 
pro tec t ion  from excessive acce lera t ions ,  wind b l a s t ,  low temperatures, low pres-  
sures,  and o the r  dangers. One concept f o r  accomplishing t h i s  i s  t o  enclose t h e  
p i l o t  i n  an escape capsule which i s  an in t eg ra l  p a r t  of the  a i rp l ane  f o r  normal 
operat ions b u t  which i s  separated from t h e  a i rp lane  f o r  emergency escape. 
f l i g h t  separa t ion  t e s t s  a t  supersonic speeds of models of one such escape cap- 
su l e  a r e  descr ibed herein.  An a n a l y t i c a l  inves t iga t ion  i s  presented i n  r e f e r -  
ence 1, and experimental inves t iga t ions  of similar systems a t  subsonic speeds 
a r e  descr ibed i n  references 2 t o  5 .  

Free- 

The in tegra ted  f l i g h t  capsule discussed here in  i s  t h e  nose sec t ion  of a I 

s ingle-sea t  a i rp l ane  equipped with f i n s ,  escape rockets ,  disconnect apparatus,  

escape system i s  i n i t i a t e d  when the p i l o t  o r  an automatic device senses t rouble ;  
s t a b i l i z i n g  f i n s  unfold from t h e i r  recesses, shaped charges cut through t h e  

I parachutes,  and some o ther  survival  necess i t ies .  The operation of t h e  proposed 



fuselage,  t h e  sea t  t i l t s  back t o  place the  p i l o t  i n  a supine pos i t ion  and thus  
increase  h i s  tolerance of acce lera t ions ,  and two so l id- fue l  rockets  propel t h e  
capsule away from the  remainder of the  a i rp lane  ( i . e . ,  t h e  af terbody) .  

The f i v e  flight t e s t s  reported herein were intended t o  inves t iga te  the  
escape operation immediately following the  explosive cu t t i ng  of t h e  a i r c r a f t  
and, i n  pa r t i cu la r ,  t o  determine the  a b i l i t y  t o  separate  a capsule from an 
afterbody under r e a l  f l i g h t  conditions,  t o  determine the  disturbances,  t h e  
motions, and t h e  acce lera t ions  of  t h e  capsule i n  t h e  in te r fe rence  f i e l d  of t h e  
afterbody, and t o  measure the  path of t he  capsule r e l a t i v e  t o  the  afterbody. 
The onboard camera recovery system i s  discussed i n  an appendix by George F. 
Lawrence. 
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SYMBOLS 

acce lera t ion ,  g u n i t s  

accelerat ion,  f ee t / s e  cond2 

w a - Q s i n  74 
drag coe f f i c i en t ,  - 

qs @; 

l i n e a r  model dimension 

acce lera t ion  of grav i ty ,  feet/second2 

a l t i t u d e  above sea l eve l ,  f e e t  

moments of i n e r t i a  

Mach number 

2 pound- se  cond 
foo t  

mass, 

number of cycles of Doppler s h i f t  

dynamic pressure,  pounds/foot 2 

capsule base area,  foot2 

l i n e a r  sca le  f a c t o r  (prototype l i n e a r  dimension divided by model 
l i n e a r  dimension) 

time, seconds 

ve loc i ty ,  feet/second 

w e i g h t ,  pounds 



2 f l i gh t -pa th  angle, degrees 

E s igh t ing  correct ion f o r  Doppler radar, degrees 

P densi ty  of a i r  surrounding vehicle,  pounds/foot3 

QI angle of r o l l ,  degrees 

Sub s c r i p t s  : 

a prototype a f t  erbody 

b t e s t  af terbody 

C t e s t  capsule 

2 longi tudina l  

n normal 

P prototype capsule 

t t ran sve r s e 

1,2, 3 successive values before each calculat ion 

4 value f o r  present  calculat ion 

5,6,7,8 successive values a f t e r  each calculat ion 

TEST VEHICLES 

Configuration 

Figure 1 i s  a drawing of t h e  rocket models t h a t  were f l ight t e s t e d .  
var ious p a r t s  of t h e  configuration a re  t h e  pilot-escape capsule, an aerodynamic 
f a i r i n g  t r a n s i t i o n ,  t h e  simulated afterbody containing a Gosling rocket motor, 
t h e  onboard recoverable camera, and a package, or  dumy camera pod, between t h e  
lower afterbody f i n s  f o r  symmetry. Separation of t h e  capsule from t h e  simulated 
afterbody was i n i t i a t e d  by explosive bo l t s ,  t h e  capsule f i n s  were f ixed  i n  t h e i r  
extended pos i t ion ,  and the re  was no parachute descent o r  recovery of t h e  cap- 
sule .  The capsule models were a l l  i den t i ca l  i n  e x t e r i o r  geometry. (See 
f i g .  2.) The capsules were constructed of g l a s s  f i b e r  and p l a s t i c  with aluminum 
s t a b i l i z i n g  f i n s .  Each capsule contained telemeter instrumentation and two 
small so l id- fue l  rocket motors, t he  nozzles of which a r e  shown i n  f igu re  3. 
After t h e  capsule models were completed, including b a l l a s t i n g  f o r  center-of- 
g rav i ty  adjustment, t he  nominal t h rus t  axis was rechecked by hanging t h e  cap- 
su le  by a cable  through t h e  center  of t h e  nozzles. I n  a l l  cases t h e  nominal 

The 
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t h r u s t  axis ( the  extended l i n e  of the  cable) passed within 0.12 inch of the  
center  of gravi ty  of t he  capsule. 

- 

The model duct was an open tube of nearly constant cross  sect ion.  The 
duct airflow was discarded t o  both s ides  by a s p l i t  duct within t h e  t r a n s i t i o n ,  
which also served t o  f a i r  the  capsule ex te r io r  l i n e s  f o r  a few inches and 
housed the b a t t e r i e s ,  the  t imer,  and the  two arming devices of t he  pyrotechnic 
devices for  control  of t he  separation maneuver. 

The drawing of f igu re  1 i s  an  exact representat ion of t he  capsule and 
afterbody used f o r  t e s t  f l i g h t s  1, 2, and 3. 
made by adding an  o f f se t  r ing ,  2 .3  inches long, ahead of t he  afterbody rocket 
i n  t h e  juncture marked "A" ( f i g .  1) t o  hold the  t r a n s i t i o n  sect ion and the  cap- 
su le  a t  an angle with respect  t o  the  afterbody center  l i n e  so t h a t  t h e i r  col-  
l e c t i v e  center of grav i ty  would be on t h e  afterbody center  l i n e .  
angle fo r  both f l i g h t s  4 and 5 was bo, and the  o f f s e t  dis tance was 1.30 inches 
up f o r  f l i g h t  4 and 1.23 inches t o  the  l e f t  f o r  f l i g h t  5 .  
o f f s e t  angle (angle of p i tch)  of t he  capsule r e l a t i v e  t o  t h e  afterbody was - 4 O ,  
causing an estimated t r i m  angle of a t t ack  a t  separation of -5.4'; f o r  f l i g h t  5 ,  
the  offset  angle (angle of yaw) was 4' and t h e  r e su l t i ng  estimated t r i m  angle 
of s ides l ip  was -7.1'. 
a r e  presented i n  t ab l e  I .  

For f l i g h t s  4 and 5 a change was 

The o f f s e t  

For f l i g h t  4, t h e  

Weights and moments of i n e r t i a s  of t he  configuration 

Figure 4 i s  a photograph of a model with t h e  capsule mounted s t r a i g h t  on 
the  afterbody on the  launcher. The angled models a r e  shown i n  f igu res  5 and 6. 
Since the  f l i g h t  vehicles  were a l l  suspended from the  launcher from t h e i r  l e f t  
side,  the angle of a t t ack  of t he  capsule i n  f l i g h t  4 ( f i g .  5 )  can be seen a s  an 
angle away from the  viewer. The angle of yaw of model 5 i n  f igure  6 appears as 
a downward angle.  

The simulated afterbody was a s t e e l  cylinder with the  t r a n s i t i o n  sect ion 
mounted on the forward end, a Gosling rocket motor mounted in t e rna l ly ,  and 
s t ab i l i z ing  f i n s  mounted on the  a f t  end. For each f l i g h t  a recoverable pod 
containing a motion-picture camera t o  photograph the  capsule separation was 
mounted on the  top  of t he  afterbody between t h e  two upper f i n s ;  f o r  aerodynamic 
symmetry a dummy pod of t he  same shape was mounted on the  bottom of t h e  a f t e r -  
body f o r  f l i g h t s  1 t o  4. For f l i g h t  5 a camera was a l s o  housed 
i n  t h e  bottom pod i n  order t o  provide more complete motion-picture coverage of 
t he  escape-rocket f i r i n g  and capsule separat ion.  A descr ip t ion  of t h e  recov- 
erable  camera pod and i t s  operation i s  given i n  t h e  appendix. 

(See f i g .  1.) 

Escape Rockets 

The escape rocket nozzles were angled, as shown i n  t h e  bottom views of t he  
capsules i n  f igure  3, t o  put t he  t h r u s t  a x i s  through the  center  of grav i ty .  
The separation rocket used i n  these  t e s t s  had t h e  t h r u s t  va r i a t ion  with time 
a f t e r  igni t ion-current  appl icat ion shown i n  f igu re  7. (Two of these  rockets  
were mounted i n  each capsule.)  The delay shown before  the  t h r u s t  buildup of 
nearly 0.1 second i s  t y p i c a l  of t he  ground t e s t s .  The t h r u s t  increased rap id ly  
when t h e  motor pressure exceeded t h e  s t rength  of a shear pin holding the  nozzle 
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closure.  
decay of t he  t h r u s t )  w a s  241 lb-sec. 
the  t h r u s t  axis of each rocket passed through t h e  center  of grav i ty  of t he  cap- 
sule  t o  e l iminate  the  need of c losely matching t h e  rockets and t o  e l iminate  
angular acce lera t ions  of t he  capsule during rocket f i r i n g .  

The t o t a l  area of the  thrust- t ime curve of f igure  7 (including the  
The rocket nozzles were angled such t h a t  

INSTRUMENTATION 

Each escape capsule w a s  equipped w i t h  an NASA six-channel telemeter t o  
record capsule loads.  
the  loca t ion  of a hypothet ical  p i l o t  and a l s o  i n  the  capsule nose i n  an attempt 
t o  obtain pi tching and yawing r a t e s .  
t o  include t h e  approximate range from 178g t o  -125g and t h e  t ransverse acceler-  
ometer, from 210g t o  -210g. These wide ranges were chosen t o  include values 
representat ive of scaled l e v e l s  of human tolerance f o r  a p i l o t  i n  a supine posi-  
t i on ,  when t h e  escape capsules represented were about 1/6-scale models of f u l l -  
s i z e  capsules. A discussion of t h i s  r e l a t ion  and other  scal ing r e l a t i o n s  i s  
included l a t e r .  

Normal and t ransverse accelerat ions were measured near 

The normal accelerometer was ca l ibra ted  

Two longi tudina l  accelerometers were included i n  each model. One acce ler -  
ometer was located i n  t h e  capsule and was ca l ibra ted  t o  cover the  range repre- 
sented by both the  power-on and power-off phases of capsule f l i g h t .  
f l i g h t s  1 t o  4, t h e  second accelerometer was located i n  t h e  afterbody t r a n s i -  
t i o n  and, i n  order t o  obtain somewhat increased accuracy, w a s  ca l ibra ted  t o  
include only the  power-off phase. 
t he  capsule by a ?-foot length of wire designed t o  break a f t e r  5 feet  of sepa- 
r a t ion  dis tance.  For f l igh t  5, t h e  second accelerometer was located i n  t h e  
capsule and w a s  ca l ibra ted  f o r  an accelerat ion range from 5Og t o  -5Og, a range 
represent ing scaled l e v e l s  of human tolerance; i n  t h i s  manner, human to le rances  
i n  a l l  t h ree  planes were instrumented. 

For 

The afterbody accelerometer was connected t o  

Ground-based instrumentation included an SCR-Sb radar s e t ,  an SCR-584 
Model I1 radar  t o  record afterbody and capsule f l i g h t  paths,  and a Doppler 
velocimeter.  Atmospheric s t a t i c  pressure and temperature were measured by a 
radiosonde released shor t ly  before each f l i g h t .  

Separation d is tances  were measured by photographing each f l i g h t  from the  
usua l  nor th  and south camera s t a t ions  a t  the NASA Wallops S ta t ion  with 16- o r  
35-millimeter motion-picture cameras with various lenses .  Figure 8 shows the  
t r a c k s  of four  f l i g h t s  with th ree  s ignif icant  t imes shown on each t rack;  a l s o  
shown are t h e  loca t ions  of t he  camera s t a t i o n s ,  t he  posi t ion radars ,  and the  
Doppler radar .  The r ap id i ty  of the  f l i g h t  made it d i f f i c u l t  f o r  t he  t racking 
cameramen t o  hold a steady a i m  on t h e  model; thus,  t h e  photographic coverage 
was var iab le  i n  qua l i t y .  The short  l e n s  covered a wide f i e l d  of view but  t h e  
r e s u l t i n g  f i l m  with i t s  small images was very grainy, whereas the  long lenses ,  
which covered a narrow f i e l d  of view, frequently missed the  c r i t i c a l  ins tan t  of 
separat ion.  A recoverable camera on the  afterbody recorded the  separation of 
t h e  capsule i n  f l i g h t  5, during t h e  t i m e  which only one ground camera recorded 
t h e  capsule pos i t ion .  

5 



There was no r o l l  s t a b i l i z a t i o n  used on the  t e s t  models, e i t h e r  i n  t h e  . 
afterbody o r  i n  t h e  capsule. This f a c t ,  combined with the  loca t ions  of t he  
establ ished camera s ta t ions ,  precluded the  obtaining of orthogonal views of t he  
capsule separation on f i lm.  The photographs t h a t  were obtained gave two views 
of each separation t e s t  from t h e  north and south camera s t a t ions  f o r  f l i g h t s  1, 
4, and 5 and from the south and west camera s t a t ions  f o r  f l i g h t  2. The angular 
displacement between the p a i r s  of camera s t a t ions  photographing each f l i g h t  i s  
l i s t e d  i n  t he  following t a b l e .  
t he  l i n e s  of s igh t  from the  model t o  two of the  camera s t a t ions .  

The numbers given represent t h e  angle between 

Between camera 
s t a t i o n s  - 

North and south 
South and west 
North and south 
North and south 

ACCURACY 

The telemeter-instrumentation system has an accuracy of 2 percent of t h e  
fu l l - sca le  ca l ibra ted  range of the  instrument, a s  has been shown from pas t  
experience with many s imi la r  systems. 
indicates  t h a t  t h e  Mach numbers a re  accurate t o  k1 percent .  
inaccuracies a r e  approximately twice as grea t  a s  the  e r r o r s  i n  Mach number. 

A consideration of a l l  f a c t o r s  involved 
Dynamic-pressure 

A s  mentioned i n  the  sec t ion  e n t i t l e d  "Instrumentation, t h e  r ap id i ty  of 
t he  f l i g h t  made it d i f f i c u l t  t o  focus motion-picture cameras with t h e  longer 
telephoto l e n s  on both the  capsule and afterbody i n  t h e  short  t i m e  i n t e r v a l  
t h a t  t he  capsule was near t he  afterbody. The accuracy of pos i t ion  measurements 
var ied from model t o  model, depending on the  l ens  used t o  take t h e  p ic tures .  
It i s  believed t h a t  t he  accuracy of t h e  information on t h e  capsule pa th  re la -  
t i v e  t o  the afterbody i s  a t  l e a s t  a s  good as *1 afterbody diameter. 

FLIGHT OPERATIONS 

The plan of operation of t h e  capsule-model f l i g h t s  was t o  propel  t h e  
e n t i r e  combination t o  a supersonic Mach number a t  a low a l t i t u d e ,  t o  permit a 
short  coasting time f o r  attainment of des i red  tes t  conditions,  t o  re lease  t h e  
explosive b o l t s  holding the  capsule t o  t h e  afterbody, and t o  propel t he  escape 
capsule away from the  afterbody. The sequence of funct ions and t h e i r  r e l a t i v e  
locat ions on a representat ive t r a j e c t o r y  a r e  shown i n  f igu re  9. The sequence 
f o r  recovery of the  camera pod i s  described i n  t h e  appendix. The launch angle 
(46' from the horizontal  f o r  a l l  t e s t s )  and the  preprogramed coast  t imes 
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(;1 second f o r  f l i g h t s  1 and 2 and 112 second f o r  f l i g h t s  4 and 5 )  were chosen 
t o  produce desired t e s t  conditions of Mach number and dynamic pressure.  

I n  model 1, current  was simultaneously applied t o  the  explosive-bolt 
squibs and t h e  escape-rocket motors. The recovered camera f i l m s  showed t h a t  
f o r  f l i g h t  1 t h e  capsule stayed motionless for  0.03 second a f t e r  explosive-bolt 
ign i t ion ,  then moved away from the  mating surface about 0.06 second a f t e r  ign i -  
t i o n .  Inasmuch as a 0.1-second delay i n  the  t h r u s t  buildup of t h e  escape 
rocket could be  expected t o  occur ( f i g .  7), it i s  believed t h a t  separat ion 
occurred before the  rockets  developed thrus t ;  t h i s  delay caused an unsat isfac-  
t o r y  separation, a s  i s  discussed l a t e r .  Ign i t ion  of t h e  explosive b o l t s  w a s  
delayed i n  f l i g h t s  2 and 4 u n t i l  the  chamber pressure i n  the  escape rockets  
had increased t o  a value of about 200 p s i ,  thus assuring t h a t  a t  l e a s t  p a r t i a l  
t h r u s t  w a s  ava i lab le  a t  separation. For f l i g h t  5 ,  t h e  rocket chamber pressure 
required before  ign i t i on  of t h e  explosive bo l t s  w a s  f u r the r  increased t o  
550 p s i  t o  provide increased th rus t  a t  separation. For f l i g h t  3, a malfunction 
prevented actuat ion of the  explosive b o l t s ,  and no separation took place.  

DATA mDUCTION 

The t r a j e c t o r i e s  of t h e  capsule models r e l a t i v e  t o  t h e  a f te rbodies  a f t e r  
separation were measured from motion pictures  of the  tes ts  taken from both t h e  
ground and onboard. 
from the  motion-picture frames, and measurements were taken p a r a l l e l  and normal 
t o  t h e  extended center  l i n e  of the  afterbody from t h e  center of t he  afterbody 
f l a t  face t o  t h e  center  of t h e  capsule base. The frame r a t e  of each camera was 
measured by counting frames between the  frame when the  rocket f i r s t  belched 
smoke and t h e  frame when the  capsule can be seen t o  move r e l a t i v e  t o  the  a f t e r -  
body. The absolute  time i n t e r v a l  between take-off and separation w a s  accu- 
r a t e l y  measured on t h e  telemeter record. T i m e  i n  t h e  p ic tures  of the  separation 
was assigned by assuming t h a t  the  camera continued t o  run a t  t h e  same r a t e  i n  
approximately t h e  first 1/2 second a f t e r  separation as it did i n  t h e  more than 
3 seconds before  separation. 

P r i n t s  (8 by 10 inches) were made on photographic paper 

Also, t o  obtain a reference f l ight-path d i r ec t ion  i n  the  p i c tu re s  it w a s  
necessary t o  assume t h a t  t he  afterbody longi tudinal  a x i s  remained a l ined  with 
t h e  f l ight pa th  (zero  angle of a t t ack ) .  This assumption i s  bel ieved t o  be 
reasonable because of t he  la rge  degree of s t a b i l i t y  of the  afterbody a f t e r  
rocket burnout. 
erenced t o  the d i r ec t ion  of t he  afterbody longi tudinal  axis and t o  t h e  apparent 
length  of t h e  afterbody i n  each p ic ture .  

The pos i t ions  of t h e  capsule af ter  separation were thus  r e f -  

The f l ight  paths  obtained a s  described represented two views of the f l i g h t  
paths  projected on the camera p ic ture  planes, normal t o  t h e  l i n e s  of s ight  of 
t h e  cameras. (See f i g .  8.) These l i n e s  of s igh t  were not orthogonal t o  each 
o ther  but  bore the  angular re la t ionships  t o  each other  tabulated i n  the  sect ion 
e n t i t l e d  "Instrumentation." The model posit ion and the  angular d i rec t ions  of 
t h e  f l i g h t  pa ths  a t  any time were known from radar  data ,  and the  angular r e l a -  
t i onsh ips  between p i c tu re  planes and f l i gh t  paths  were obtained from the 
geometry of t h e  f l i g h t  path and t h e  camera loca t ions .  

7 



Since the  angular re la t ionships  between p ic ture  planes and f l i g h t  path - 
were known, the  f l i g h t  paths were then projected onto the  v e r t i c a l  and hori-  
zontal  planes of t he  escape capsule a t  t he  in s t an t  of separation ( these  planes 
a r e  the  v e r t i c a l  plane of symmetry and the  perpendicular plane through t h e  hori-  
zontal  center l i n e ) .  
were not accounted f o r  i n  the  project ion.  

Rolling motions of t he  capsule subsequent t o  t h a t  time 

The second model was not  photographed from the north camera s t a t ion .  Film 
taken a t  t he  radar  bui lding was used t o  measure the  r e l a t i v e  pos i t ions .  The 
measurements were based on afterbody diameter since the  l i n e  of s ight  was almost 
along the afterbody axis. 
the  onboard cameras on a l l  f l i g h t s  t o  a id  i n  es tab l i sh ing  the  f l i g h t  paths of 
t h e  capsules r e l a t i v e  t o  the  a f te rbodies  following separation. However, t he  
camera was not recovered from f l i g h t  2, and during f l i g h t s  1 and 4 the  capsules 
l e f t  the f i e l d  of view of t he  camera too  rap id ly  t o  permit the  obtaining of any 
usefu l  information o ther  than the  d i r ec t ion  of i n i t i a l  motion. For f l i g h t  5 
t h e  capsule remained within the  f i e l d  of view long enough t o  permit a s ign i f -  
i can t  amount of data  t o  be obtained. 

It was intended t o  make use of the  photographs from 

Velocity data  from t h e  velocimeter were recorded i n  terms of cycles of 
Doppler s h i f t .  Velocity was 
served t o  smooth t h e  data:  

calculated by the following equation, which a l so  

v4 = 

Acceleration was computed by 

/Ni + Nr, + 

t he  equation 

N 3  + N 4  N5 + N6 + N 7  + 
L 0.291250 

6 cos E cos E2 

With t h e  use of t h i s  acce lera t ion  equation, t he  drag coef f ic ien t  was computed 
by the  following equation: 

A s  noted previously, normal and t ransverse accelerometers were located a t  
two longi tudinal  posi t ions i n  each capsule.  The d i f fe rence  i n  measured accel-  
e r a t ions  a t  the two loca t ions  i s  proport ional  t o  angular acce lera t ion  and can 
then be integrated t o  produce angular r a t e s .  An attempt t o  use t h i s  procedure 
on t h e  accelerations measured i n  f l i g h t  showed t h a t  t h e  d i f fe rences  i n  acceler-  
a t ion  a t  the two longi tudinal  loca t ions  were less than t h e  accuracy l i m i t s  f o r  
t he  accelerometers; therefore ,  no usefu l  angular-rate  information was obtained. 
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RESULTS AND DISCUSSION 

I n  one t e s t  t h e  capsule did not separate from t h e  afterbody; i n  t h e  o ther  
four  t e s t s  t he  i g n i t i o n  t imes of t h e  separation b o l t s  and the  separat ion 
rockets  were var ied t o  produce d i f f e ren t  t e s t  conditions.  
of the  f i v e  f l i g h t s  i s  shown i n  f igu re  10 and the  t r a j e c t o r i e s  over t h e  regions 
of i n t e r e s t  a r e  shown i n  f igu re  11. No r e l i a b l e  Mach number or  ve loc i ty  his- 
t o r i e s  a r e  ava i l ab le  f o r  capsules following the  separat ion i n  f l i g h t s  1, 2, 
and 4 because t h e  velocimeter tracked t h e  af terbodies  of those t e s t s ,  and the  
l a rge  instrument ranges and l a rge  var ia t ions  i n  longi tudina l  acce lera t ion  made 
in tegra t ion  of these  values t o  obtain capsule ve loc i ty  an impract ical  and inac- 
curate  procedure. 
shaded band shown i n  f igu re  12. Measured atmospheric conditions a t  t h e  i n s t a n t  
of separat ion of t he  capsule a r e  given i n  tab le  I. 

A Mach number h i s t o r y  

The Reynolds numbers per f o o t  of t h e  t e s t s  l i e  within t h e  

Capsule and Afterbody Deceleration 

The f l i gh t -pa th  decelerat ions indicated by the  Mach number h i s t o r i e s  of 
f i g u r e  10 i l l u s t r a t e  t he  nature of t h e  separation problem under inves t iga t ion .  
The longi tudina l  dece lera t ions  immediately p r i o r  t o  separation a r e  from about 
-5g t o  -6g f o r  f l i g h t s  1, 2, and 3 and about -6.2g and -7.5g f o r  f l i g h t s  4 
and 5. 
the  negative t r i m  angle of a t t a c k  f o r  f l i g h t  4 and the  negative t r i m  angle of 
s i d e s l i p  f o r  f l i g h t  5. 

H i g h e r  values f o r  the  l a t t e r  two f l i g h t s  a r e  t o  be expected because of 

The curve f o r  f l i g h t  3 ( f i g .  10) represents  t h e  decelerat ion of t h e  
capsule-afterbody combination s ince no separation took place during t h i s  f l i g h t .  
It w a s  learned t h a t  t he  curve f o r  f l i g h t  5 from some point  about 1 /2  second 
a f t e r  separat ion represents  the  decelerat ion of the  capsule alone, from calcu- 
l a t i o n s  of t h e  drag coe f f i c i en t s  ( t o  be discussed l a t e r ) ,  and t h a t  t h e  curves 
f o r  f l i g h t s  1, 2, and 4 represent  t he  decelerat ion of the  afterbody alone. The 
dece lera t ion  f o r  each of t he  two p a r t s  i s  g rea t e r  than t h a t  f o r  t h e  combination 
because of t h e  base drag acquired by t h e  capsule and t h e  f ront  face  drag 
acquired by t h e  afterbody following separation. 

The b a s i c  problem i n  e f fec t ing  a sa t i s f ac to ry  separation i s  caused by t h e  
more rap id  dece lera t ion  of t he  capsule as compared with t h a t  of t h e  afterbody. 
The separat ion rockets  must provide suf f ic ien t  longi tudinal  and v e r t i c a l  sepa- 
r a t ion  d i s t ances  between the  two p a r t s  t o  avoid the  p o s s i b i l i t y  of c o l l i s i o n  
from t h e  overtaking afterbody. 

Separation Paths 

Figures 13 and 14 present information on the  separation paths  of the  cap- 
su l e s  with respect  t o  t h e  af terbodies .  
paths  a r e  e s s e n t i a l l y  paths  p lo t t ed  on nonroll ing axes f ixed i n  the  afterbody 
and a r e  ind ica ted  i n  t h e  legend of f igu re  13 a s  "orthogonal t o  p i l o t  a t  s t a r t  
of separat ion" t o  ind ica t e  the  d i r ec t ion  of i n i t i a l  motion. 

It should be remembered t h a t  these  

The capsules r o l l e d  
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various amounts following separation, and the  subsequent motion was not con- .. 
verted t o  axes r o l l i n g  with t h e  capsule. Because of t h i s  f a c t  and because the  
photographs from the  ground-based equipment were general ly  of poor qua l i t y  f o r  
purposes of data  analysis ,  t he  separation paths presented f o r  f l i g h t s  1, 2, 
and 4 are  of l imited accuracy and provide mostly qua l i t a t ive  information use- 
f u l  i n  subsequent ana lys i s  of t he  capsule accelerat ions.  Since t h e  onboard 
camera provided good coverage of t h e  separat ion f o r  f l i g h t  5 ,  t h e  separation 
path f o r  t h i s  case should be more accurate .  
onboard camera f o r  f l i g h t  5 a re  shown i n  f igure  14 .  
on the onboard camera f o r  t he  e a r l y  portion because the  north camera missed the  
f i rs t  0.37 second of separation maneuver. 

Four t y p i c a l  photographs from t h e  
Path information depended 

Figure l 3 ( a )  ind ica tes  t h a t  following separation during f l i g h t  1 t h e  cap- 
sule  d id  not move rap id ly  away from the  afterbody. A s  noted e a r l i e r ,  i gn i t i on  
of t h e  explosive b o l t  and rocket i g n i t e r  were programed simultaneously; there-  
fo re ,  because of the  ign i t i on  delay indicated i n  f igure  7, it i s  believed t h a t  
separation took place before the  separation rockets  f i r e d .  Subsequent t o  the 
t h r u s t  buildup of the separation rocket, the  capsule, although a t  some dis tance 
below the  afterbody, maintained i t s  approximate longi tudinal  pos i t ion  with 
respect t o  the  afterbody f o r  a short  t i m e  and then f e l l  behind as the  t h r u s t  
decayed (see f i g .  7 ) .  The l a t t e r  e f f e c t  was aggravated by increased capsule 
drag resu l t ing  from appreciable yawing motions which developed a f t e r  0.2 sec- 
ond, a s  w i l l  be shown l a t e r .  These yawing motions were probably due a t  l e a s t  
i n  p a r t  t o  the  i n i t i a l  slow separation of t he  capsule which placed it i n  t h e  
region of t he  bow shock from the  afterbody, r e su l t i ng  i n  possible  l a rge  d is turb-  
ances. 
i n  f l i g h t  1 experienced no r o l l i n g  motion i n  t h e  f i r s t  0 .1  second, a f t e r  which 
it began ro l l ing  i n  a negative d i r ec t ion .  

An examination of t he  t racking photographs indicated t h a t  t h e  capsule 

The onboard photography from f l i g h t  1 confirmed the  i n i t i a l  downward 
motion of t he  capsule, but since the  camera was located on top  of t h e  afterbody 
no usefu l  separation-path information w a s  obtained the rea f t e r .  

The separation-path information obtained f o r  f l i g h t  2 i s  the  l e a s t  accu- 
r a t e  f o r  tha t  of the  separation paths  because t h e  onboard camera was not 
recovered and because one of t he  usable ground photography s t a t i o n s  was located 
almost d i r e c t l y  behind the  model and thus  could not provide accurate  data  on 
longitudinal-separation dis tances .  The separation-path data  ( f i g .  l 3 (b )  ) ind i -  
ca t e  t h a t  t he  capsule probably remained i n  t h e  v i c i n i t y  of t h e  afterbody imme- 
d i a t e l y  a f t e r  separation, a s  i n  f l i g h t  1, and subsequently f e l l  behind as t h e  
separation-rocket t h r u s t  decreased. Although the  i n i t i a l  motion cannot be con- 
sidered t o  be accurately depicted i n  f igu re  l3 (b )  because of t he  poor p i c tu re  
qua l i ty ,  it appears t h a t  t he  value of separation-rocket t h r u s t  ex i s t ing  a t  
explosive-bolt ign i t ion  was not s u f f i c i e n t l y  high t o  provide any appreciable 
improvement i n  separation dis tance over t h a t  obtained f o r  f l i g h t  1. The cap- 
su le  of f l i g h t  2 began r o l l i n g  i n  a pos i t i ve  d i r ec t ion  shor t ly  a f t e r  separat ion 
and, a t  0.1 second, had a t ta ined  about 90° of r o l l  with respect t o  the  
a f t  erb ody . 

The separation-path data  f o r  f l i g h t  4 ( f i g .  l 3 ( c ) )  show t h a t  t h e  capsule 
i n i t i a l l y  moved an appreciable d is tance  forward of and s l i g h t l y  below t h e  
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afterbody and then moved upward and t o  the  l e f t  before moving behind the  a f t e r -  
body. A s  noted previously, t h i s  capsule was mounted on the  afterbody a t  a neg- 
a t ive  p i t ch  angle,  and the  combination would be expected t o  t r i m  a t  a negative 
angle of a t t ack  a t  separation. Analysis of the  t racking photographs indicated 
t h a t  t h i s  capsule ro l l ed  rap id ly  i n  a posi t ive d i r ec t ion  following separation 
and a t ta ined  a r o l l  angle of 180° with respect t o  the  afterbody i n  t h e  f i r s t  
0 .1  second. Because of t h e  f a i r l y  rapid motion of t h i s  capsule i n  a la te ra l  
d i rec t ion ,  the  capsule quickly l e f t  the  f i e l d  of view of t h e  onboard camera, 
and no f l i gh t -pa th  information could be obtained therefrom. 

A s  described e a r l i e r ,  t h e  separation of t h e  capsule from i t s  afterbody i n  

Fig- 
f l i g h t  5 was delayed u n t i l  t he  t h r u s t  of the separation rockets was consider- 
ably higher than t h a t  f o r  the  capsules a t  separation of f l i g h t s  2 and 4. 
u res  l3 (d )  and 14 ind ica te  t h a t ,  i n  comparison wi th  t h e  other  f l i g h t s ,  there  
was a considerable improvement i n  the  escape maneuver f o r  t h e  capsule of 
f l i g h t  5 i n  t h a t  t h e  capsule moved i n i t i a l l y  ahead of the  afterbody considerably 
more rap id ly  and a t t a ined  a much grea te r  longi tudinal  separation before rocket 
burnout. I n  addi t ion t o  t h e  l a rge r  value of t h r u s t  a t  separation, t h i s  f l i g h t  
a l s o  experienced a smaller Mach number a t  separation. (See f i g .  10.) The 
r e su l t i ng  low dynamic pressure and drag produced a g rea t e r  r a t i o  o f  t h r u s t  t o  
drag which, i n  tu rn ,  contributed t o  greater  forward accelerat ion of t he  cap- 
sule .  The capsule f o r  f l i g h t  5 was mounted on the  afterbody i n  a yawed a t t i -  
tude so t h a t  t h e  combination was trimmed t o  produce a pos i t ive  l a t e r a l  acce le r -  
a t ion  a t  separation ( i . e . ,  accelerat ion t o  t h e  r i g h t ) .  
t h e  capsule did,  i n  f a c t ,  move i n i t i a l l y  t o  the  r i g h t .  Following separat ion of 
the  yawed capsule, t he  afterbody tended t o  yaw i n  a negative d i rec t ion .  Thus, 
p a r t  of t he  apparent l a t e r a l  separation between t h e  capsule and afterbody i n  
the  photographs of f igure  14 represents a negative angular displacement of t he  
afterbody and i t s  attached camera. This e f f ec t  i s  i l l u s t r a t e d  by the  f a c t  t h a t  
i n  f igure  l 3 ( d )  a t  0.3 second the  capsule i s  l a t e r a l l y  very near the  extended 
afterbody center  l i n e ,  whereas i n  f igu re  14, a t  about t he  same time, t he  cap- 
sule  appears t o  be displaced l a t e r a l l y  by several  afterbody diameters. 
lowing separation-rocket burnout t h e  capsule moved downward and rearward with 
respect t o  t h e  afterbody. 

Figure 14 shows t h a t  

Fol- 

The r e l a t i v e  r o l l i n g  motions of t he  capsule and afterbody of f l i g h t  5 a re  
indicated i n  f igu re  14 (note  sun's re f lec t ion  on capsule f i n s ) .  
of t he  ground-based photographic data  in ' i ca ted  t h a t  t he  afterbody and capsule 
were both r o l l i n g  i n  a negative d i r ec t i  .n, and a t  about 0.3 second a f t e r  sep- 
a ra t ion  ( f i g .  14) both had ro l l ed  abou, 90' from t h e  pos i t ion  a t  separation. 

An ana lys i s  

Capsule Accelerations 

The longi tudina l ,  normal, and transverse acce lera t ions  measured i n  t h e  

The i n i t i a l  longi tudinal  accelerat ions ( f i g .  15) f o r  
capsules a t  t h e  probable posi t ion of a p i lo t  a r e  presented i n  f igu res  15, 16, 
and 17, respec t ive ly .  
f l i g h t s  1, 2, and 4 were about -5g, which correspond roughly t o  t h e  decelera- 
t i o n s  a t  separat ion ded.uced from f igure  10. For f l i g h t  5 the  i n i t i a l  longitud- 
i n a l  acce le ra t ion  was -3.7g, i l l u s t r a t i n g  t h e  e f f e c t  of a t h rus t  buildup before 
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i n i t i a t i o n  of separation. The extremely rapid increase i n  accelerat ion f o l -  . 
lowing release of the  capsule ( f l i g h t  5) of 18.5g i n  0.01 second indica tes  t h a t  
t h e  separation took place during the  rapid buildup i n  t h r u s t  of t he  capsule 
rockets.  

For f l i g h t  1 t h e  longi tudinal  accelerat ion continued t o  increase negat ively 
u n t i l  about 0.08 second, except f o r  a momentary decrease t o  zero a t  0.053 sec- 
ond; t h i s  decrease i s  believed t o  ind ica te  a probable co l l i s ion  between t h e  
capsule and the  afterbody as  t h e  capsule moved downward following physical d i s -  
connection before ign i t ion  of t he  separation rockets.  A t  rocket i gn i t i on  the  
accelerat ion b u i l t  up t o  a pos i t i ve  value f o r  a very short  time and then became 
increasingly negative a s  t h e  rocket t h rus t  decreased. 

For flights 2 and 4 t he  longi tudinal  accelerat ion b u i l t  up rapidly from 
t h e  i n i t i a l  values of -5g t o  pos i t ive  values f o r  a short  time ( i l l u s t r a t i n g  t h e  
e f f e c t  of t he  a l t e r ed  ign i t i on  sequence t o  permit p a r t i a l  t h r u s t  buildup before 
separation) and then became increasingly negative a s  rocket t h rus t  decreased. 
The existence of the negative accelerat ion a t  separation i s  considered undesir- 
able ,  however, and f o r  f l i g h t  5 t h e  ign i t i on  sequence w a s  again changed t o  
assure a pos i t ive  accelerat ion a t  separation. 
short-period o s c i l l a t o r y  accelerat ions of r a the r  la rge  artrplitude superimposed 
on t h e  s lower changes with time; these  o s c i l l a t o r y  components a l s o  appeared on 
the  normal and t ransverse acce lera t ions  ( f i g s .  16 and 17, respec t ive ly) .  
cont ras t ,  f l i g h t  5 exhibited r e l a t i v e l y  small short-period o s c i l l a t o r y  motions. 
The de ta i led  reasons f o r  these phenomena can not be ascer ta ined from the  da ta  
avai lable ,  but  it has been surmised t h a t  la rge  disturbances were induced on the  
capsules of f l i g h t s  1, 2, and 4 because of t h e i r  r e l a t i v e l y  slow separation 
which caused them t o  remain within the  region of the  bow shock and associated 
flow f i e l d  of the  forward end of the  afterbody f o r  t he  f i r s t  few hundredths of 
a second following separation. For f l i g h t  5, however, t h e  capsule moved 
rap id ly  forward and escaped from the  region of dis turbed flow before s i g n i f i -  
cant motions were induced. This rapid motion suggests t h a t  f o r  s a t i s f ac to ry  
separation, p a r t i c u l a r l y  a t  moderate and low supersonic speeds, the  escape cap- 
sule  must be rapidly removed from t h e  influence of t he  flow f i e l d  over the  fo r -  
ward end of the afterbody. 

F l igh ts  1, 2, and 4 exhibi ted 

I n  

For f l i gh t  4, the  longi tudina l  accelerometer reached the  instrument l i m i t  
a t  0.93 second and remained a t  t h a t  l i m i t  till 1.60 seconds. 
l a t e r ,  t h i s  accelerat ion ind ica tes  unexpectedly high values of longi tudinal  
force  and i s  an indicat ion of e i t h e r  an instrument malfunction o r  an angle of 
a t t ack  and yaw of a n  undetermined l a rge  value.  

A s  pointed out 

The normal accelerat ions ( f i g .  16) ind ica te  t h a t  following separation t h e  
capsules assumed a negative t r i m  a t t i t u d e .  It should be remembered t h a t  t he  
separation rockets produced a pos i t ive  acce lera t ion  which had a value of about 
40g a t  peak t h r u s t  and decreased t h e r e a f t e r  so t h a t  t h e  acce lera t ions  produced 
by t h e  capsule aerodynamics were more negative, by corresponding amounts, than 
those shown i n  f igure  16. 
with increasing t i m e  of f l i g h t ,  the  normal acce lera t ions  approached zero. Pos- 
i t i v e  normal accelerat ion corresponds t o  the  acce lera t ion  experienced by a 
p i l o t  i n  a pull-up maneuver. I n  con t r a s t  t o  t h e  normal acce lera t ions  f o r  these 

A s  t he  Mach number and dynamic pressure decreased 
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cppsules which exhibited no s imilar  e f f ec t s ,  t h e  t ransverse accelerat ions f o r  
the  capsules of f l i g h t s  1, 2, and 4 ( f i g .  17) experienced ra ther  la rge  excur- 
sions from zero i n  the  f i r s t  second a f t e r  separation. The t ransverse accelera- 
t i o n  f o r  t h e  capsule of f l i g h t  5 did not show a comparable excursion. The rea- 
sons f o r  these  e f f e c t s  a r e  not obvious from the data,  but several  f a c t o r s  
e x i s t  which may contr ibute  t o  the  phenomena observed. Unpublished wind-tunnel 
data  on t h e  d i r ec t iona l  and longi tudinal  s t a b i l i t y  f o r  the  capsule configuration 
of t h i s  inves t iga t ion  ind ica te  t h a t  t h e  d i rec t iona l  s t a b i l i t y  i s  somewhat l e s s ,  
which would lead t o  l a rge r  l a t e r a l  excursions from any disturbances o r  asym- 
metries,  such a s  rocket-thrust  misalinement o r  unequal t h rus t  on t h e  two 
rockets.  It may be noted t h a t  t h e  peak transverse accelerat ions i n  f l i g h t s  1 
and 2 occur about t h e  time of burnout of the separation rockets,  whereas t h e  
peak t ransverse accelerat ion i n  f l i g h t  4 occurs e a r l i e r .  
a l so  show t h a t  t he  lateral-force-curve slope i s  s ign i f i can t ly  g rea t e r  than t h e  
l i f t - cu rve  slope and would magnify t h e  transverse accelerat ions i n  comparison 
with t h e  normal accelerat ions f o r  comparable angular displacements. 

The wind-tunnel t e s t s  

A fu r the r  e f f e c t  which may contr ibute  t o  t h e  t ransverse excursions i s  
pitch-yaw-roll coupling. No onboard instrumentation w a s  provided f o r  measuring 
t h e  r o l l i n g  motions of t h e  capsules. However, some roll information was 
obtained by observing t h e  pos i t ions  of t h e  capsule i n  the  photographs from 
ground-based cameras. The r o l l  was measured by observing the  movement of a 
sunlighted f i n  o r  the  d i s t i n c t i v e  rounded canopy. This information i s  pre- 
sented i n  f igure  18. 

The capsules i n  f l i g h t s  1 and 2 showed no r o l l i n g  motion f o r  a f r ac t ion  of 
a second a f t e r  separation; however, by 0.15 second both capsules were r o l l i n g  
a t  a high r a t e .  (See f i g s .  18(a)  and (b) .) This high r a t e  was 50 t o  75 per- 
cent of  t h e  na tu ra l  frequency i n  yaw and could cause some amplif icat ion of t h e  
yawing motion generated by asymmetries. 
( f i g .  18( c ) )  , t he  r o l l i n g  motion began immediately a t  separation and a t t a ined  
a value about equal t o  t h e  na tura l  frequency i n  yaw a t  0.1 second, then sub- 
sided t o  a small value a t  0 .2  second. I n  f igure 17 it can be seen t h a t  t he  
t ransverse acce lera t ion  f o r  t h i s  capsule b u i l t  up much more rap id ly  and reached 
a higher value than f o r  t h e  capsules of f l i g h t s  1 and 2, the maximum occurring 
shor t ly  before 0.3 second. For the  capsule of f l i g h t  5 ( f i g .  18(d) , the  
r o l l i n g  motion was smaller than f o r  t he  other capsules; t he  r o l l i n g  ve loc i ty  
remained near ly  zero, except f o r  one 90° change i n  r o l l  angle a t  0.1 second. 
The t ransverse  accelerat ion f o r  t h i s  capsule did not show any s ign i f i can t  
departure from a zero mean value a s  it d id  for t h e  other  capsules. 

For t h e  capsule of f l i g h t  4 

The preceding discussion ind ica tes  the p o s s i b i l i t y  t h a t  r o l l  coupling 
a f f e c t s  t h e  yawing motion. For several  reasons, no attempt w a s  made t o  repro- 
duce these  e f f e c t s  by a calculat ion of the  coupled motions: t h e  rolling-motion 
data  are scanty and not very accurate,  the  asymmetries caused by t h r u s t  m i s -  
alinement and nonident ical  rocket burning are unknown, and the  disturbances 
caused by t h e  e f f e c t s  of the  afterbody flow f i e l d  on the  separated capsule can- 
not be estimated. 

It would appear t o  be desirable  t o  avoid la rge  and e r r a t i c  r o l l i n g  motions 
during separat ion i n  order t o  avoid amplification of r e su l t an t  p i tch ing  and 



yawing coupling e f f ec t s .  Avoiding la rge  and e r r a t i c  r o l l i n g  motions might be. 
accomplished by u t i l i z i n g  an automatic ro l l -cont ro l  system during the  separa- 
t i o n  maneuver o r  by using s t ab i l i z ing  devices which do not produce a s  severe 
r o l l i n g  moments a s  t h e  present capsule f i n s  when the  capsule i s  i n  an asymmetric 
o r  highly disturbed flow f i e l d .  I n  any case, rapid separation of the capsule 
from the flow f i e l d  over the  forward end of the  afterbody appears t o  be highly 
desirable ,  pa r t i cu la r ly  f o r  separations i n i t i a t e d  a t  supersonic speeds. 

Because of the  ra ther  l a rge  and unpredictable disturbances t h a t  may 
r e s u l t ,  a s  demonstrated i n  the present report ,  it would appear t o  be highly 
desirable  t o  conduct f r ee - f l i gh t  dynamic t e s t s  during the  development of any 
supersonic system f o r  separation of two bodies, pa r t i cu la r ly  i f  asymmetries 
e x i s t  i n  one o r  both bodies and i f  a l a t e r a l  as well  as a longi tudinal  separa- 
t i o n  distance i s  required. 

Capsule S t a b i l i t y  

The measurement of capsule aerodynamic s t a b i l i t y  w a s  not a primary objec- 
t i v e  of the t e s t s .  Some s t a b i l i t y  information can be obtained from the  normal 
and t ransverse accelerat ion records a t  those places where the  short-period 
osc i l l a t ions  a re  of su f f i c i en t  r egu la r i ty  f o r  a frequency t o  be determined. 
From the accelerat ion t r aces  i n  f igures  16 and 17, values of p i t c h  frequency 
from 9.0 t o  10.5 were obtained a t  Mach numbers from 1 . 4  t o  1.5; these  values 
a r e  i n  very good agreement with a pitch-frequency value of about 9.5 obtained 
from unpublished wind-tunnel da ta .  Yaw frequencies were more sca t te red ,  varying 
from 7 t o  10 over a Mach number range from 1 . 2  t o  1.5, a s  compared with a value 
of 8 .5  derived from the unpublished wind-tunnel da ta .  

Drag 

Drag coef f ic ien ts  obtained f o r  both t h e  capsule and the  afterbody a re  
shown i n  f igure  19. Capsule drag data  a r e  shown only f o r  t h e  capsule of 
f l i g h t  5 since Mach number da ta  following separation were not ava i lab le  from 
the  e a r l i e r  f l i g h t s .  Data f o r  t h i s  capsule were obtained from both Doppler 
radar and onboard longi tudinal  accelerometer ( te lemeter)  measurements following 
separation-rocket burnout. These data  a r e  i n  f a i r  agreement with each other 
and with unpublished wind-tunnel data .  (See f i g .  19.) The wind-tunnel data  
represent t o t a l  drag coef f ic ien t ,  including whatever e f f e c t s  s t i n g  in te r fe rence  
may have had on the  base pressures.  It would appear from t h e  data  i n  f igure  1-9 
t ha t  these e f f e c t s  were s m a l l .  

The longi tudinal  accelerometer i n  t h e  capsule during f l i g h t  4 stayed 
aga ins t  the instrument l i m i t  f o r  0.67 second, ind ica t ing  higher force than was 
expected f o r  t h e  power-off phase of capsule f l i g h t .  
t h a t  there  were a very high angle of a t t a c k  and angle of yaw, but  t he  data 
avai lable  do not permit determination of  an approximate angle.  The motion pic- 
t u r e s  showed t h a t  t he  capsule pitched nose down and yawed nose r i g h t  before the 
image became a b l u r  because of the  high angular r a t e .  

The p o s s i b i l i t y  e x i s t s  
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The drag coe f f i c i en t s  of the  afterbody as obtained from Doppler radar 
measurements from f l i g h t s  1, 2, and 4 a re  also shown i n  f igu re  1-9 and a r e  based 
on the  same reference area a s  were the  coef f ic ien ts  f o r  the capsule. Although 
the  drag f o r  t h e  afterbody i s  much higher than f o r  the capsule, t he  weight i s  
a l so  higher,  and the  separation mechanics are governed by the  r a t i o  W/CDS, a s  
i s  discussed i n  t h e  following section. 

Application of Results t o  Full-scale Airplanes 

The r e s u l t s  obtained from the  models flown i n  t h i s  inves t iga t ion  can be 
considered t o  simulate the  motions of a fu l l - sca l e  prototype a t  a l t i t u d e s  which 
a re  a function of t h e  prototype s ize  and weight and with scal ing f a c t o r s  applied 
t o  the  times and acce lera t ions .  The equation f o r  scal ing ( r e f .  6) f o r  geometric 

s i m i l a r i t y  i s  9 = d(%), which a r i s e s  from t h e  requirement f o r  a constant 
m, 

m re la t ive-dens i ty  parameter, t h a t  is ,  -. The mass of each capsule model and 
PSd 

t h e  atmospheric dens i ty  a t  each separation a l t i t u d e  were subs t i tu ted  i n t o  t h i s  
equation. 
a s  a funct ion of prototype mass f o r  several  d i f f e r e n t  values of l i n e a r  scale 
f a c t o r .  The ca lcu la ted  d e n s i t i e s  were converted t o  a l t i t u d e s  from a standard 
atmosphere cha r t  ( r e f .  7); t he  r e s u l t s  are  shown i n  f igu re  20. 
bands cover t h e  simulated a l t i t u d e  ranges represented by the  separation a l t i -  
tudes of four  model f l i g h t s .  
u re  20 contains  the  range of most p r a c t i c a l  values f o r  a f i l l - s i z e  capsule, and 
the  simulated a l t i t u d e s  shown cover t h e  region i n  which most of t he  supersonic 
f l y i n g  i s  done. Figure 20 shows, f o r  example, t h a t  i f  the  models flown a r e  
assumed t o  be 1/6-scale models ( s  = 6) of  a large-scale  prototype, then the  
nondimensional motions obtained represent the motions of t he  prototype a t  an 
a l t i t u d e  of 43 000 f e e t  f o r  a prototype weight of 3000 pounds and 36 500 f e e t  
f o r  a prototype weight of 4-000 pounds. 
a r e  capsule angular r a t e s ;  these  r a t e s  and the  l i n e a r  displacements a r e  meas- 
ured i n  terms of a capsule l i n e a r  dimension. The s i m i l a r i t y  conditions a l s o  
require  t h a t  t h e  model and prototype have the same nondimensional center-of- 
g rav i ty  loca t ions  and r a d i i  of gyration. 

The atmospheric densi ty  around an equivalent prototype was calculated 

The shaded 

The range of prototype-capsule weights i n  f ig -  

The nondimensional motions re fer red  t o  

For d i r e c t  appl ica t ion  t o  t h e  simulated prototype conditions j u s t  
described, t h e  model time sca les  must be multiplied by the  sca le  f a c t o r  and 
the  acce lera t ions  must be divided by the  scale f a c t o r .  Thus, the  separation 
paths  i l l u s t r a t e d  i n  f igu res  13 and 1 4  and the  acce lera t ion  h i s t o r i e s  i n  f i g -  
ures  15 t o  17 may be taken t o  apply d i r e c t l y  t o  large-scale  prototypes by 
simply charging the  time and acce lera t ion  scales accordingly. 

The sca l ing  r e l a t i o n s  f o r  the  separation rocket require  t h a t  a rocket f o r  
a large-scale  prototype produce a r a t i o  of t h r u s t  t o  capsule weight equal t o  
t h a t  of t h e  model divided by the  scale  fac tor  and t h a t  it have a burning time 
equal  t o  t h a t  of the  model times the  scale f a c t o r .  



Separation dis tances  a re ,  of course, influenced by the  afterbody, and t h e  
same scaling f ac to r s  j u s t  discussed a l s o  apply t o  an afterbody. However, t h e  
afterbody used i n  t h e  present  tests d id  not geometrically simulate the  a f t e r -  
body for  any fu l l - sca l e  p i lo t ed  a i r c r a f t ;  therefore ,  t h e  drag coef f ic ien t  and 
drag reference area of the  afterbody must a l so  be considered i n  analyzing 
longitudinal-separation d is tances .  When t h e  previous sca l ing  r e l a t ions  a r e  
used, it can be  shown t h a t  f o r  s i m i l a r i t y  of afterbody nondimensional separa- 
t i o n  dis tances  the  values obtained i n  the  model t e s t s  represent a prototype 
afterbody having a value of CDS a s  follows: 

where the r a t i o  of afterbody weight t o  capsule weight i s  the  same f o r  both the  
model and the  prototype. The values of CD f o r  t he  a f te rbodies  of t he  present 
t e s t s  were given previously. 
weight i s  not the  same f o r  model and prototype, the  equation f o r  sca l ing  a f t e r -  
body drag coe f f i c i en t s  i s  a s  follows, as derived from reference 8: 

When the  r a t i o  of afterbody weight t o  capsule 

'D,a - ma mC 
CD,b ?e 
- _ - -  

Tolerance of P i l o t s  t o  Capsule Accelerations 

Data from reference 9 ind ica t e  t h a t  a human being i n  a supine pos i t ion  
( a s  he would be during the  escape sequence invest igated herein)  can t o l e r a t e  
accelerat ions of about 27g i n  a normal d i r ec t ion  (designated as a +180° di rec-  
t i o n  i n  ref .  9) f o r  5 seconds durat ion.  
d i r ec t ion  i n  t h e  capsule; Oo i n  r e f .  9 ) ,  t h e  human tolerance f o r  a ?-second 
durat ion i s  approximately -1gg. 
assumed equal t o  t h e  to le rance  t o  ex te rna l  force i n  a +180° d i r ec t ion  i n  r e f -  
erence 9 i f  adequate side support was provided f o r  t h e  p i l o t ;  thus ,  t he  t o l e r -  
ance i s  $-27g. For d i r e c t  comparison with the  model t e s t - f l i g h t  r e s u l t s ,  these  
values of acce lera t ion  may be mult ipl ied by the  assumed sca le  f a c t o r .  
sca le  f ac to r  of 6, f o r  example, t h e  t o l e r a b l e  acce lera t ions  i n  model sca le  
would be from 162g t o  -114g i n  a normal d i r e c t i o n  and +162g i n  a t ransverse  
d i rec t ion .  
mal accelerat ions f o r  a l l  models remained w e l l  wi thin t h e  t o l e r a b l e  limits a t  
a l l  times, but t h a t  t h e  t ransverse  acce lera t ions  approached t h e  limits during 
a l l  f l i g h t s  except f l i g h t  5 ,  though none reached t h e  l i m i t .  For l a r g e r  sca le  
f a c t o r s  ( represent ing l a r g e r  prototypes a t  higher a l t i t u d e s ) ,  t h e  t o l e r a b l e  
acce lera t ions  limits, i n  model scale ,  would be l a r g e r .  

I n  the  opposite d i r ec t ion  (normal 

Tolerance t o  t ransverse  acce lera t ion  was 

For a 

The acce lera t ion  curves of figures 16 and 17 indica te  t h a t  t he  nor- 

It should be noted t h a t  t h e  r o l l i n g  r a t e  f o r  t he  capsule i n  f l i g h t  2 
a t t a ined  a value of about 2100 deg/sec ( f i g .  18(b)) ,  which f o r  a sca le  f a c t o r  
of 6 would represent about 1 revolut ion per  second on a f u l l - s c a l e  a i rp lane .  
Recent experimental evidence ( r e f .  10) ind ica t e s  t h a t  t h i s  r a t e  of r o t a t i o n  i s  
physiological ly  to l e rab le  t o  a human. 
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a CONCLUSIONS 

From t h e  r e s u l t s  of a s e r i e s  of rocket-model f l i g h t  t e s t s  t o  simulate the  
separation of a pilot-escape capsule, which was the  nose sect ion of a super- 
sonic a i rplane,  from the afterbody t h e  following conclusions were derived: 

1. Successful separation of an escape capsule from an afterbody having a 
l e s s  rapid power-off decelerat ion than t h e  capsule can be performed a t  super- 
sonic speeds i f  the  separation rockets have su f f i c i en t  t h r u s t  and if  t he  
sequence of operation of t h e  rockets and the separation mechanism a r e  properly 
control led.  

2.  Rapid separation of t he  escape capsule from the  region of t he  flow 
f i e l d  over t he  forward end of the  afterbody i s  desirable  t o  minimize d is turb-  
ances t o  t h e  capsule. 

3. Attention should be given t o  means of cont ro l l ing  o r  minimizing r o l l i n g  
motions t o  avoid amplification of pi tching and yawing motions caused by r o l l -  
coupling e f f e c t s .  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley S ta t ion ,  Hampton, V a . ,  March 18, 1963. 



APPENDIX 

CAMERA RECOVERY SYSTEM 

By George F. Lawrence 
Langley Research Center 

This discussion descr ibes  a simple camera recovery system used i n  t h e  
s e r i e s  of f l ight  t e s t s  discussed i n  t h e  main body of t h i s  paper. 
system was designed t o  perform on short-range f l i g h t  missions and i n  water 
depths not exceeding 130 f e e t .  

The recovery 

The recovery assembly consisted of a camera package, a power section, and 
a parachute sect ion.  (See f i g .  21.) 

The camera package contained a high-speed camera spec ia l ly  modified t o  
withstand high f l i g h t  accelerat ions.  This section was constructed t o  be water- 
t i g h t  and w a s  a l s o  f i l l e d  with a p l a s t i c  (nonabsorbent) foam t o  insure f l o t a -  
t i o n  r e l i a b i l i t y .  An explosive b o l t  connected the camera package t o  t h e  r e s t  
of t h e  recovery assembly. The power sect ion supplied by b a t t e r y  the  energy 
t h a t  powered a l l  recovery subsystems. A water conductive switch and 
fluorescein-dye powder were a l s o  included i n  t h i s  sect ion.  The parachute sec- 
t i o n  housed a 6-foot-diameter parachute and two gas generating devices. 
gas generator deployed the  parachute t h a t  was used t o  separate t h e  recovery 
assembly from t h e  afterbody, whereas t h e  other  gas generator released two s t e e l  
pins  t h a t  held the recovery assembly t o  t h e  afterbody. 

One 

The windscreen and the assembly mountings were permanently f ixed t o  t h e  

Several  pingers were i n s t a l l e d  on t h e  l a s t  t e s t  vehicle  i n  
afterbody sleeve. Also shown i n  figure 21 i s  an underwater sonar t ransmi t te r  
ca l led  "pinger." 
order t o  evaluate t h e  a p p l i c a b i l i t y  of pingers as a recovery a i d  i n  rocket 
f l i g h t  t e s t i n g .  Further information on t h e  pinger i s  reported i n  reference 11. 

The recovery sequence was s t a r t e d  before  vehicle  l i f t - o f f .  A ground c i r -  
c u i t  s ta r ted  the  camera and i n i t i a t e d  two delay squibs located i n  t h e  recovery- 
system power section. Delay squibs actuated t h e  recovery-assembly separation 
system a f t e r  the  vehicle passed through t h e  data photographing period and 
decelerated t o  subsonic v e l o c i t i e s .  The s p e c i f i c  t i m e  f o r  separation was 
chosen as a t i m e  on the  afterbody t r a j e c t o r y  when dynamic pressure w a s  low 
enough and a l t i t u d e  was high enough t o  be acceptable t o  t h e  recovery system. 

The separation of the  recovery assembly from the tes t  vehicle  was accom- 
plished by two simultaneously timed pyrotechnics: 

(1) One gas generator pushed out two p ins  t h a t  locked t h e  recovery assem- 
b l y  t o  the t e s t  vehicle .  

(2)  A second gas generator e jec ted  a 6-foot-diameter parachute t o  the r e a r  
of t h e  t e s t  vehicle .  
vehicle  and a l s o  performed a s  a re ta rda t ion  system f o r  t h e  recovery assembly. 

The parachute pul led t h e  recovery assembly from the  test  

18 
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The parachute reduced the ve loc i ty  a t  water impact t o  approximately 40 t o  
50 f t / s e c .  

A second separation, e s s e n t i a l  i n  the  recovery sequence, was actuated by 
two water-conductive switches during water impact. These switches i n i t i a t e d  
two pyrotechnic devices.  
t h a t  separated t h e  camera package from the  power and parachute sect ions.  The 
camera package alone was inherently buoyant, but would not f l o a t  while attached 
t o  the  power and parachute sections.  The other pyrotechnic device actuated a 
gas generator which spread f luorescein dye over t h e  surface of the  ocean. A 
l a rge  dye s l i c k  was immediately v i s i b l e  a f t e r  f luorescein dye was l i t e r a l l y  
exploded from the  recovery assembly. The physical pickup of t h e  camera package 
was made by a small surface boat t h a t  was directed t o  the  impact point by a 
hel icopter .  The impact point of the  camera package was generally about 
10 000 f e e t  from shore. 

One pyrotechnic device actuated an explosive b o l t  

Photographic d a t a  were obtained f o r  four out of t h e  f i v e  f l i g h t  t e s t s .  
Photographic data  were not obtained on t h e  second f l i g h t  t e s t  because the  
ground f i r i n g  c i r c u i t  t h a t  i n i t i a t e s  the  camera recovery system f a i l e d  t o  oper- 
a t e ;  hence, t h e  recovery system had no opportunity t o  perform. 
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TABLE I.- WEIGHTS, INERTIAS, AND ATMOSPHERIC CONDITIONS 

iYloments of i n e r t i a ,  
f t -1b - sec2 

AT CAPSULE SEPARATION 

Density, 
F l igh t  

0.230 
.296 
.3OO 
.293 
.325 

Weight, l b  

1.507 1.408 0.002163 
1.607 1.424 .002199 
1.490 1.408 
1.470 1.423 . O O 2 l 9 l  
1.531 1.335 .002200 

:apsule 

% .82 
60.44 
58.88 
59-04 
61.47 

W t  e rb od y 

735.1 
739 - 3 
744.1 
758 - 
799 - 

-1 lb-sec2/ft4 

3peed of 
sound, 
f t / s e c  

1118.9 
1104.2 

1115.5 
1118.8 

Mach 
number 

1.537 
1.565 

1.544 
1 - 439 
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L-61-440 

L-60-6223 
Figure 3.- Bottom views of capsule models showing escape-rocket nozzles. 
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L-60-8745 
Figure 4.- Vehicle f o r  f l i g h t  2 on launcher; capsule and t r a n s i t i o n  undeflected. 
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c 

L-61-2482 
Figure 5.- Vehicle f o r  f l i g h t  4 on launcher; capsule and t r a n s i t i o n  mounted with 

nose away from camera (negative p i t c h  angle) .  
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L 

. 

L -61 - 7281 
Figure 6.- Vehicle for f l i g h t  5 on launcher; capsule and t r a n s i t i o n  mounted w i t h  

nose down (posit ive yaw angle).  
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Figure 8.- Plan view of f l i g h t  paths and camera s t a t i o n s .  
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- 
V i e w  f rom r i g h t  s i d e  

- - - 
,A sec 

r 

L . 3  sec 

(b) Fl ight  2 .  

Figure 13. - Continued. 
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V i e w  f rom t o p  
- - - 

V i e w  f r o m  r i g h t  side 

( c )  Flight  4. 

Figure 1 3 . -  Continued. 
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V i e w  f r o m  t o p  
- 

\8  sec 

. 2  sec 

V i e w  f r o m  r i g h t  s i d e  - - 

1 .8 sec 

(d) Flight 5.  

Figure 13.- Concluded. 
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( a )  A t  time of separat ion.  L- 65-62 

Figure 14 . -  Photographs taken from onboard afterbody of f l i g h t  5 of capsule a t  time of 
and a f t e r  separation. ( 16-IFJII f i lm .  ) 

38 



, 

(b) 0.0% second a f t e r  separation. 

Figure 14. - Continued. 

L-65-63 
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(c )  0.147 second af ter  separat ion.  

Figure 14. - Continued . 
L-65-64 



(d) 0.293 second a f t e r  separation. 

Figure 14. - Concluded. 

L-65-65 
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Figure 19.- Drag coef f ic ien t  of capsule f o r  f l i g h t  5 and of af terbody.  
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2000 3000 4000 5000 
Prototype weight, Wp,  Ib 

Figure 20.- Simulated a l t i t u d e s  f o r  a range of prototype capsule weights a t  
four  l i n e a r  scale  f a c t o r s .  



NASA-Langley, 1965 L-3537 


